Berkeley Transportation Systems, Inc.

Arterial Performance Measurement in the Transportation Performance Measurement System (PeMS)

Overview

Karl Petty, Tiffany Barkley Berkeley Transportation Systems, Inc.

- 1. Software system that collects transportation data
- 2. Computes performance measures and stores them
- 3. Provides many ways to visualize transportation data
- 4. Is a foundation for performance reporting on the transportation system

Caveats:

1. It doesn't replace engineering or planning judgment.

Company Mission

 Help clients leverage all data to enhance the performance of the transportation system (we're "data geeks")

Product

Transportation Performance Measurement System, PeMS

Project History

- Initiated as a research project at UC Berkeley in 1998
- Started with simple freeway data, expanded to incidents, arterials, transit
- First deployment was inside of Caltrans

Major Clients:

 California Department of Transportation, Utah Department of Transportation, Washington Department of Transportation, SANDAG, Los Angeles Department of Transportation, Southern California Association of Governments, Attiki Odos Motorway (Athens, Greece)

What is PeMS (details)?

- Real-time Archive Data Management System (rt-ADMS)
- PeMS collects many types of detailed, raw data in real-time and in batch mode – primarily freeway operations data
- It processes the data in real-time:
- Diagnostics
- Imputation for missing values
- Aggregations
- Fusing of different sources
- Computes many performance measures (travel time, delay, etc).
- Large # of tools to plot, chart, etc.
- Stores raw data forever
- Caltrans deployment:
- Has 32,000 sensors reporting every 30 seconds
- Over 19,000 census stations
- Started in 1999, ~12TB of data

Visualization of Current Status

- Many different GIS-based displays
- We merge together the historical and real-time data in a number of ways
- Can show many different types of information on the maps
 - Roadway
 - Facility
 - Historical

High-Level Corridor Analysis

- Qualitative report for a particular corridor
- Shows "speed contour" diagram for every day in a whole month
- Can visually identify traffic patterns
- Here we're showing traffic flowing from the suburbs to Sacramento
- We can see that on Fridays the bottleneck as we approach Sacramento isn't there

Many, Many Types of Tools In PeMS

- Historical Analysis
 - Traditional point and spatial measures (VMT, VHT, Delay, Travel time)
- Real-Time Analysis
 - Travel time prediction
- GIS-based Tools
 - Sensor configuration management, tracking, performance reports, etc.
- Advanced Visualization Tools
 - Animations, Corridor analysis
- Managed Facility Analysis
 - Balance of demand, differences in travel time
- Traditional Count Data
 - HPMS reporting, integration with ITS data, AADT, MADT computations
- Weight-in-Motion and Vehicle Classification Data
 - WIM data analysis, load spectra reporting, classification reports
- Traffic Management Tools
 - Lane requirements chart, delay estimation analysis
- Arterial Analysis
 - Link travel times, control delay estimation, GIS displays
- Transit Data
 - Passenger count and AVL integration, on-time performance, loading analysis, travel times

Arterial Data in PeMS

Arterial Performance Monitoring

- Benefits
 - Identify problem areas
 - Understanding control delay
 - Quantify operational improvements
 - Understand what's taking place on the network
 - Integrated with freeways (in Caltrans' version)
- Needed Inputs
 - Topology information (what are the streets and where are they?)
 - Sensor information (flows, speeds, travel times)
 - Signal timing information (static plans, real-time measurements)
- Arterial PeMS Approach
 - Sensor agnostic PeMS takes in any type of sensor data
 - Simple loops, Video-based detection, Bluetooth tag reads, Sensys dots or re-id detectors, etc.
 - System agnostic PeMS isn't a control system
 - Different levels of reporting based on what's being measured

Arterial Data Challenges

- 1. Topology: GIS linework typically doesn't have the information needed
- Stitching together multiple sets is painful (MPO model layers, City layers, TIGER layers)
- 2. Traffic Data: Sensor locations and capabilities vary by deployment.
- Different number of lanes, different granularities, different quantities
- 3. Signal Data
- Some technical and political challenges in obtaining real-time controller data.
- Without cycle-by-cycle data, we have to estimate or use timing plans.

			O I
	Chula Vista, CA	Carson, CA	City of Los Angeles
Detectors	Re-identification, Flow	Individual Vehicle Records	30-second flow and occupancy
Locations	One departure (release) lane	All approach and release locations, some midblock	Some midblock lanes
Signal Info	Time-of-Day Plans	Estimated in real-time from release detectors	Time-of-Day Plans
Size	18 detectors, 9 intersections	125 detectors, 8 intersections	18,712 detectors, 2,200 intersections

Bottom Line: The system needs to maintain a flexible (but programmatic) approach towards arterial data collection and performance computation.

Example: Chula Vista Project

- Types of performance measurement visualization
- Examples of use (standard movement reporting, signal performance, etc)

Integrated with Caltrans' instance of PeMS

Listing of Intersections in Chula Vista

- The configuration page for an intersection
- Shows the attached links
 - Note that there is one link in each direction
- Schematic of the intersection is draw on the bottom
- The links contain the measurements

Intersection Information

- For these intersections we have the timing plans
- We look at them by day and then time of day
- The phase indication diagram shows the duration of the cycle for each phase
- The table below provides the details

Link Reports: Flow and Travel Time

- We compute the travel time distribution for each hour (based on all the matched vehicles)
- We store the following percentiles:
 - 0th (minimum)
 - 10th
 - 25th
 - 50th (median)
 - 75th
 - 90th
 - 100th (maximum)
- Here we're showing the 10th and 90th percentiles (ie: 80% of the vehicles had travel times between these times)

Example: City of Los Angeles

- Integrated with ATSAC data
- Performance maps
 can show flow,
 density, and speed
 averaged over a
 user-selected month
 and hour of the day
- Here, we are mapping flow at 9:00 AM and can easily spot highdemand areas.

Investigating Data

- Can turn on intersections and get turning count diagrams
- Way to browse data to understand trends easily
- Can drill down to the timeseries trends from here

Assessing Detector Health

- PeMS assesses the health of every sensor in the system every night
- Users can see a daily summary of overall and city-by-city or street-by-street detector health
- When detectors are not working, we attempt to diagnose the problem
- Users can also drill down to see where, when, and why specific detectors were broken

Investigating Arterial/Ramp/Freeway Data

- Arterial and Freeway
 data integration lets
 users compare the
 patterns between
 arterial, freeway, and
 ramp traffic.
- Special events typically start on arterial streets and then effect freeways
- Example: How do Los
 Angeles Dodgers home
 games impact traffic on
 the various facilities near
 the stadium?

Special Event Arterial Traffic

- Here, we are plotting hourly volumes over 12 days at an arterial stadium exit.
- First 6 days are Dodger
 Home Games.
- Huge spike in volumes post-game (600-800 veh/hour), clost to midnight
- Can clearly see the effects of special events
- In an integrated system

 (with freeway data) we
 can pursue where the
 freeways are overloading

Example: Carson

- Characteristics
 - 1.8 mile corridor in Los Angeles's South Bay
 - 8 signalized intersections
 - Commercial/industrial/ residential land uses
- Importance
 - City and County signal timing responsibilities
 - Recently coordinated
 - Proximity to managed freeway corridors
 - Just west of a designated truck route

Detection

- Difficult to convert existing detectors for traffic monitoring purposes
- Solution: Install Sensys Wireless
 Vehicle Detectors
 - All approach lanes (in crosswalk)
 - Some departure lanes
 - Four midblock locations (speed)
- Send data for each vehicle detection
- Installed June 2009

Carson Street Approach

Visualizing Corridor Performance

- Time-Space Coordination diagrams generated for coordinated systems and time periods
 - Need to have known offsets between intersections!
- X-axis: Time
- Y-axis: Distance down corridor
- Horizontal lines: when an intersection is green (or red)
- Slope of lines represent the speed limit
- Speed limit and timing plan offsets used to show progression quality

Visualizing Intersection Performance

- As a function of the time in the cycle:
 - When do vehicles arrive at an intersection?
 - When is the light typically green?
- Show the average fraction of vehicles during the cycle that arrive on green at an intersection
- Only 39% of the vehicles have arrived on green for this link
- Adapted from the "Purdue Coordination Diagram"
 (PCD), by Day, Bullock, et al at Purdue.

Control Delay Results

- Control delay reduced at nearly all Carson intersection approaches.
- Cross-street and total intersection control delay increased.

Agency-wide Route Comparison Measures

- Shows summary statistics for all routes for a given time range
- Users can see the sum or the average (per day) for the various values
- Clicking on the route can jump to the route page

Single-Route Dashboard

- Starting page for a single route
- Shows some summary performance measures for the route by month
- We showing a combination of scheduled information and measured information
- As well as the top stops by boardings and alightings

Measurement Coverage: Stops

- % of stops that are measured in the AM Peak period
- Measured means that an instrumented bus drove by (not that it stopped)
- Some routes and days had 100% coverage for all stops (all buses on all trips were instrumented with APC counters)

Buses on Maps

- We're grabbing the AVL data
 - Through a bad hack
- Placing the buses on the real-time map in PeMS
- Infowindow shows what comes across in the XML feed
- We color them as to whether they're early, on-time or late

Deployment Options

1. Integrated with Caltrans' PeMS

- They are interested in corridor management
- Have agreed in the past to take in partner data

2. Standalone

- Not part of Caltrans' PeMS, inside of agency
- Allows for customization

3. Standalone, but Hosted

Similar to standalone, but hosted (no IT issues)

- Arterial corridor management needs
 - Different approach from freeways
 - Solid detection infrastructure
 - Automated process for data collection and processing
 - New data storage and computation framework
 - Dynamic system, not a static report
 - New arterial-based visualizations
- A-PeMS provides one way to achieve this
 - Sensor and system agnostic
 - Flexible deployment options
 - Extensible features
 - Integration with other California data sets

Questions